Two-dimensional imaging of dense tissue-simulating turbid media by use of sonoluminescence.

نویسندگان

  • Q Shen
  • L V Wang
چکیده

An optical imaging technique that is believed to be novel was developed for noninvasive cross-sectional imaging of tissuelike turbid media. By use of a sonoluminescence signal generated internally in the media with a 1-MHz continuous-wave ultrasound, two-dimensional images were produced for objects embedded in turbid media by a raster scan of the media. Multiple objects of different shapes were resolved with this imaging technique. The images showed a high contrast and good spatial resolution. The spatial resolution was limited by the focal size of the ultrasonic focus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sonoluminescence optical confocal tomography of tissue

In this paper, we report experiments on optical confocal tomography by use of sonoluminescence signal in both biological tissue and tissue-simulating media. A highsensitive confocal scanning setup based on photon counting technique was developed. With the system, we obtained images of the objects embedded in tissue-simulating turbid media. The images showed a high contrast and a lateral resolut...

متن کامل

Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media.

Continuous-wave ultrasonic modulation of scattered laser light was used to image objects buried in tissue-simulating turbid media. The buried object had an absorption coefficient greater than the background turbid medium. The ultrasonic wave that was focused into the turbid media modulated the laser light that passed through the ultrasonic field. The modulated laser light that was collected by ...

متن کامل

Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media.

We present an imaging technique for the correction of geometrical effects in fluorescence measurement of optically thick, turbid media such as human tissue. Specifically, we use the cross-polarization method to reject specular reflection and enhance the diffusive backscattering of polarized fluorescence excitation light from the turbid media. We correct the nonuniformity of the image field caus...

متن کامل

Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media.

Continuous-wave ultrasonic modulation of scattered laser light has been used to image objects in tissue-simulating turbid media for what is to our knowledge the first time. The ultrasound wave focused into the turbid media modulates the laser light passing through the ultrasonic focal zone. The modulated laser light collected by a photomultiplier tube reflects the local mechanical and optical p...

متن کامل

Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis.

A new approach for optical imaging and localization of objects in turbid media that makes use of the independent component analysis (ICA) from information theory is demonstrated. Experimental arrangement realizes a multisource illumination of a turbid medium with embedded objects and a multidetector acquisition of transmitted light on the medium boundary. The resulting spatial diversity and mul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 38 1  شماره 

صفحات  -

تاریخ انتشار 1999